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Abstract

We present new analytic results relating to the nonstationary Stefan-type problems for the unidirectional solidification of binary solu-
tions or melts with a mushy layer. Our detailed analysis of the field data is based on the classical model of a mushy layer, which is mod-
ified in order to obtain explicit solutions (solid phase thickness and growth rate, temperature distributions, conductive and latent heat
fluxes are determined). Predictions for the growth rate and temperature profiles of the mixed-phase and solid regions agree well with
existing observations on young sea ice dynamics.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In spite of the extended history of study of solidification,
many aspects of the physics of this phenomenon remain
unclear. Aspects of forming of various types of micro-
and macrostructures in solids obtained by solidification,
the physical mechanisms of which remain to a large degree
unclear, are of particular importance. Traditionally the
study of directional solidification was and is performed
within the framework of the classical model [1], leading
to the Stefan boundary value problem. In this approach
it is assumed that the liquid and solid phases are separated
by a clearly expressed smooth (planar, cylindrical, spheri-
cal, etc.) interface between the phases, heat transfer occurs
by conduction according to the Fourier law and the
velocity of the crystallization front is controlled by the
absorption of heat by the solid phase. The mathematical
formulations corresponding to these physical models
belong to the class of highly-nonlinear problems with mov-
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ing boundaries. Methods of solutions of these problems
have been extensively investigated, among others, in Refs.
[2–6]. Due to the difficulties in obtaining analytical solu-
tions, a wide range of numerical methods has also been
reported by Crank [6] and references therein. In spite of
the appreciable progress attained in investigating these
problems, it became clear during the past several years that
this approach is limited. So, for example, Ivantsov [7]
demonstrated that, under certain conditions, a region of
impurity-induced supercooling i.e., one in which the tem-
perature is lower than the temperature of the phase transi-
tion, forms in the liquid phase. One of the major
achievements in this field doubtlessly consists in the possi-
bility that the morphological stability of the crystallization
front may be disturbed, a finding established experimen-
tally by Tiller [8,9] and validated analytically by Mullins
and Sekerka [10]. However, the scenario suggested by Mul-
lins and Sekerka takes place when the kinetics of formation
of elements of the new phase within the supercooled region
is frozen. Another scenario of the development of direc-
tional solidification of the binary melt or solution was sug-
gested by Borisov [11] (see also Refs. [12,13]). His theory of
the quasiequilibrium two-phase (mushy) layer is based on
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Nomenclature

a solid–mushy layer boundary
b mushy layer–liquid boundary
c specific heat capacity
C impurity concentration (brine salinity)
h front position
k thermal conductivity
LV latent heat of solidification
m liquidus slope
t time
T temperature
z spatial coordinate

Greek symbols

q density
u solid phase fraction

Subscripts

i properties of solid (sea ice)
w properties of liquid (water)
m properties of mushy layer
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the assumption that the nascent supercooling is instanta-
neously reduced by growing dendrites and that there forms
some structureless two-phase zone, separating the crystal
and melt (this case corresponds in a certain sense to rapid
kinetics of formation of elements of the new phase in
the metastable zone). The morphological instability of the
phase interface and the instability of the metastable consti-
tutionally supercooled binary solution (melt) cause a
system of elements of the solid phase in the form of den-
drites, columnar and uniaxial crystals to appear in the
liquid phase. The development of this system reduces the
supercooling and leads to formation of a new stable solid-
ification mode characterized by the presence of a mushy
layer that separates the crystal and the solution. The study
of relationships governing solidification in the presence of a
mushy region is extremely complicated. This happens
because it is necessary to investigate the interaction of non-
linear heat and mass transfer, phase transitions at the solid/
mush/liquid interfaces, as well as within the solution. This
situation stimulated the search of new, unconventional
approaches to modeling the solidification with a mushy
layer. One of such constructive approaches consists in the
following. A relaxation time of the temperature field is
essentially less than a relaxation time of the diffusion field.
In particular, the latter explains why the temperature field
is described by linear profiles (see, among others, field
observations carried out by The LeadEx Group [14]).
Moreover, diffusion fluxes play an important role fre-
quently only within a mushy layer. If this is really the case,
the mass balance equation takes the form of the Scheil
equation [15]. Our theory is devoted to the question how
to construct analytic solutions describing real solidification
processes with a mush on the basis of the aforementioned
principles. In particular, in order to compare our theory
with experiments, let us pay our attention to modeling
the solidification of young sea ices playing a very important
role in the surface heat and mass balance of the Arctic
Ocean. This ice is formed, for example, due to the diver-
gence of wind stress which continually produces cracks in
the perennial sea ice cover known as leads. In the Arctic
winter, the relatively warm water in leads is exposed to
the cold air above it. A thin veneer of ice rapidly forms
across an exposed lead. After one day’s growth the layer
of ice is about 10 cm deep, which is still thin compared with
the surrounding ice, which is typically several metres thick.
We consider the initial formation of ice in leads and its
growth during the first few days on the basis of observa-
tions carried out by Morison and others [14]. A detailed
description of the scientific program and observations has
been given by Morison et al. [14] and Wettlaufer et al.
[16]. We will not dwell on this point in detail. However,
we will point out main features of the Lead Experiment
field campaign. There were four main lead deployments
during the 6-week experiment. A particularly interesting
deployment is ‘‘lead 3” which was the largest (approxi-
mately a kilometer wide) lead. Deployment at lead 3 began
early on the morning of April 6, 1992 and was evacuated 2
days later. We describe observations from both of the
buoys that were deployed late on the afternoon of April
6, 1992 (buoy 5 was deployed �2 hours before buoy 6).
For the goals of our theory, we briefly outline the frontal
model and discuss its predictions about sea ice dynamics.
Of course, our subsequent theory is well suited for solidifi-
cation of melts within the framework of physical hypothe-
ses under consideration.

2. Planar front

Let us now demonstrate how one of the simplest models
of the planar front works in practice. Let us now analyze a
system consisting of a binary melt or solution and a solid
phase (e.g. sea water and ice), separated by some interface
z ¼ hðtÞ, where z is the spatial coordinate and s is the time.
The system under consideration is shown in Fig. 1a: solid
and liquid phases are divided by the phase transition
boundary, hðtÞ, moving downwards in the liquid because
the solid wall, z ¼ 0, is cooled with time oscillations. The
(atmospheric) temperature, T atðtÞ, determined at z ¼ 0, will
be regarded as experimentally known. Now, we treat the
process as fully thermally controlled. On this basis, the heat
transfer process is described by the local conservation of
heat within the solid
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supplemented by the Stefan condition (a heat balance) at
the planar interface, which is
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Fig. 2. Time series of ice thickness and temperature–time traces for (a,b) buoy
the theory under consideration. The ice–mushy layer boundary is a good app
shown by means of function aðtÞ). Numbers at the curves corresponding to eac
ice/atmosphere interface. The curve at z ¼ 0 cm represents the atmospheric te
investigators is decimal days of 1992, abbreviated as UT and denoted on the fi
properties used in calculations: T w ¼ �2 �C, LV ¼ 3072� 105 W s m�3, ki ¼ 2:
where LV is the latent heat released as the solid fraction in-
creases, ki is the thermal conductivity, qi is the density, and
ci is the specific heat capacity of the solid (sea ice). The
liquid phase (ocean) is treated as isothermal, which is to
say that the temperature field T w ¼ const for z P hðtÞ.
Analyzing experimental curves (see Fig. 2), we conclude
that the temperature distribution in the young sea ice
(solid phase) can be regarded as a nearly linear function
of the spatial coordinate z. From the physical point of view
this means that the temperatures at different depths under-
go near-self-similar change (Fig. 2b and d) with small vari-
ations from full self-similarity. From the mathematical
point of view this means that Eq. (1) takes the form
o

2T iðz; tÞ=oz2 ¼ 0. This is because that the temperature
relaxation time is many times less than a characteristic time
of the front motion. Taking into account the latter, we ar-
rive at the linear temperature profile within the solid (sea
ice)

T iðz; tÞ ¼ T atðtÞ þ
T w � T atðtÞ

hðtÞ z: ð3Þ
c

d

5 and (c,d) buoy 6 at lead 3 in accordance with the LeadEx experiment and
roximation to the data for ub ¼ 0:5 and ub ¼ 0:6 (these dependencies are
h trace designate the depths (expressed in centimeters) measured from the
mperature (T atðtÞ) at the ice surface. The time scale used by the LeadEx

gure. The time origin in minutes corresponds to 0221, day 98 UT. Physical
03 W m�1 �C�1, kw ¼ 0:56 W m�1 �C�1, Dw ¼ 1:2� 10�9 m2 s�1.
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The position of the planar solid–liquid interface is found
from condition (2). Namely

hðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ki

LV
ðT wt �

Z t

0

T atðaÞdaÞ

s
; ð4Þ

where the initial condition of the form hð0Þ ¼ 0 is taken
into account.

Time series of ice thickness and temperature–time traces
in accordance with expressions (3) and (4) are shown in
Fig. 2a and b for buoy 5 by the dash-dotted lines. It is eas-
ily seen that this frontal solution rather poorly describes
experimental data (this line is drawn only for z ¼ 10 cm
in Fig. 2b). To test the validity of expressions (3) and (4)
(instead of the partial differential equation (1) with corre-
sponding boundary conditions) we demonstrate our
numerical solution of expressions (1) and (2) by the dashed
curves in Fig. 2a and b. One can readily see that the dashed
and dash-dotted curves coincide very closely whereas, as
before, the curves obtained numerically and experimentally
are widely spaced.

Further, if we forget for a minute that the temperature
Tw is constant, that is, if we consider it as a free time-
dependent parameter, we conclude that an increase in the
absolute value of Tw decreases the calculated hðtÞ for each
fixed t, i.e. the front positions, obtained from expression
(4), move hðtÞ away from experimental data. On the other
hand, the temperature profiles T iðz; tÞ, obtained from
expression (3) for fixed z, approach experimental data for
this same increase in jT wj. Decreasing the absolute value
of Tw leads to the opposite conclusions. It immediately fol-
lows that variations in the temperature Tw cannot reconcile
theory and observations or, in other words, the frontal the-
ory does not adequately describe experimental data. This
is, apparently, due to the fact that the clear dividing bound-
ary ‘‘solid–liquid” of the phase transition does not exist in
natural conditions. In other words, the phase transition
occurs in a layer, filled with the liquid and solid material,
which is ahead of the purely sea ice. Such a layer will be
considered below. Now, let us emphasize that the linear
temperature profile (3) is in good agreement with the fron-
tal model and, perhaps, this profile describes most initial
stages of the process.
3. Mushy layer

Let us analyze the solidification of a binary mixture with
a mushy region, in which heterogeneous inclusions of the
new phase (dendrites or crystals) grow in such a manner
that this region is virtually totally desupercooled [5,11].
We consider a semi-infinite region (z > 0) filled with the
solid material (0 < z < aðtÞ), the mushy layer (aðtÞ < z <
bðtÞ), and the liquid phase (z > bðtÞ). Here aðtÞ and bðtÞ rep-
resent the solid/mushy layer and mushy layer/liquid phase
transition boundaries (Fig. 1b). As before, our analysis will
be based on the assumption of a linear temperature profile
in the solid phase with respect to the spatial coordinate, i.e.
T iðz; tÞ ¼ T atðtÞ þ C1ðtÞz; 0 < z < aðtÞ; ð5Þ

where C1ðtÞ is a time-dependent function. This expression
is based on observations given by Morison et al. [14] (see
also Wettlaufer and others, [16]) and aforementioned
discussions.

By analogy, by reason of self-similarity, the temperature
profile within the mushy layer will be considered as a linear
function of z, i.e.

T mðz; tÞ ¼ T 1ðtÞ þ zT 2ðtÞ; aðtÞ < z < bðtÞ; ð6Þ

where time-dependent functions T 1ðtÞ and T 2ðtÞ will be
found below (gradients of distributions (5) and (6) are dif-
ferent). From the physical point of view, the temperature
linearity means that the ralaxation time of the temperature
field is not only less than a characteristic time for growth of
the mushy layer, but also less than the time associated with
variation in solid fraction in the mushy layer. What is
more, the question of why expression (6) approximately
satisfies to the classical heat transfer equation

qmcm

oT m

ot
¼ o

oz
kmðuÞ

oT m

oz

� �
þ LV

ou
ot

ð7Þ

will be discussed below. Here qm is the density, cm is the
heat capacity, and km is the conductivity of the mushy
layer.

The transport of solute takes the form (we use the Scheil
equation to describe the mass transfer in a mush [17])

o

ot
ðð1� uÞCmÞ ¼ 0; aðtÞ < z < bðtÞ; ð8Þ

where Cm is the brine salinity (integration gives the Scheil
formula known in metallurgy). This equation implies that
the solid phase is nearly pure ice. Formula (8) is frequently
applied by a number of investigators (see, among other,
[15] and [17]). It is a good approximation for the impurity
redistribution during the crystal growth for a wide range of
experimental conditions (e.g. [18]). Within the mushy layer
the local salinity of the liquid phase and the local temper-
ature are related to one another through the phase diagram
for sea ice [19]. In the range of salinities encountered here,
this salinity-dependent freezing point is expressed by the
linear phase diagram

T m ¼ �mCm; aðtÞ < z < bðtÞ; ð9Þ

where m is the liquidus slope.
The boundary conditions applied at the sea ice/mushy

layer interface are [5,20]

u¼ua; T i¼ T m; z¼ aðtÞ; ð10Þ

LV ð1�uaÞ
da
dt
¼ ki

oT i

oz
�½kiuaþ kwð1�uaÞ�

oT m

oz
; z¼ aðtÞ;

ð11Þ

Cmð1�uaÞ
da
dt
¼�Dwð1�uaÞ

oCm

oz
; z¼ aðtÞ; ð12Þ

where ua ¼ uaðtÞ is the solid fraction at z ¼ aðtÞ, kw and Dw

are the thermal conductivity and diffusion coefficient of the
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pure water. The thermal properties of the mush are as-
sumed to be volume-fraction-weighted averages of the
properties of the individual phases so that kmðuÞ ¼ kiuþ
kwð1� uÞ (see, among others, [5,20–22]).

Further, we have the boundary conditions imposed at
the interface between mushy layer and the relatively warm
isothermal ocean (T w ¼ const)

u ¼ ub; T m ¼ T w; z ¼ bðtÞ; ð13Þ

LV ub
db
dt
¼ ½kiub þ kwð1� ubÞ�

oT m

oz
; z ¼ bðtÞ; ð14Þ

where ub is the solid fraction at z ¼ bðtÞ, and Tw is the con-
stant temperature of the liquid (sea water) determined for
z P bðtÞ. It must be emphasized that the mass balance con-
dition at z ¼ bðtÞ, analogous to the boundary condition
(12), is absent within the framework of our model. This
is due to the fact that some variations in the temperature
gradient at z ¼ bðtÞ on the mush side of the interface (con-
stant temperature in the ocean) leads to corresponding
variations in the brine salinity gradient at z ¼ bðtÞ and,
therefore, to variations in the mushy layer thickness in
accordance with the criterion for constitutional supercool-
ing (this condition holds for the mushy layer and its bound-
aries), which is

oT m

oz
¼ �m

oCm

oz
:

Physically, a decrease in the temperature within the liquid
boundary layer causes crystallization process, which is in
progress until the local salinity attains its equilibrium value
for a given temperature.

Integrating Eq. (8) and taking into account expressions
(6), (9) and (13), we come to the solid phase distribution
within the mushy layer (similar form of u is deduced by
Wettlaufer et al. [16])

uðz; tÞ ¼ 1þ T wðub � 1Þ
T 1ðtÞ þ zT 2ðtÞ

: ð15Þ

Substitution of expressions (5), (6), (9) and (15) into the
boundary conditions (10)–(15) gives

uaðtÞ¼ 1þ T wðub�1Þ
T atðtÞþC1ðtÞaðtÞ

; ð16Þ

C1ðtÞ¼
LV ð1�uaÞ

ki

da
dt
þ½uaþKð1�uaÞ�T 2ðtÞ; K ¼ kw

ki

;

ð17Þ
T atðtÞþC1ðtÞaðtÞ¼ T wþT 2ðtÞðaðtÞ�bðtÞÞ; ð18Þ

½T 2ðtÞðbðtÞ�aðtÞÞ�T w�ð1�uaÞ
da
dt
¼Dwð1�uaÞT 2ðtÞ; ð19Þ

T 2ðtÞ¼
LV ub

U
db
dt
; U¼UðubÞ¼ kiubþ kwð1�ubÞ; ð20Þ

T 1ðtÞ¼ T w�bðtÞT 2ðtÞ: ð21Þ

As is seen from expression (16), if we suppose ua ¼ 1, it
immediately follows that ub ¼ 1, that is, the mushy layer
is entirely filled with the solid material (frontal model). In
view of the fact that we seek an alternative solution
(ua 6¼ 1), like factors, 1� ua, can be cancelled from both
sides of (19).

Combining expressions (16), (18) and (20), we find the
solid fraction at the ice/mushy layer interface in the form

uaðtÞ ¼ 1þ T wðub � 1Þ
T w þ LV ub

U
db
dt ðaðtÞ � bðtÞÞ

: ð22Þ

Eliminating T 2ðtÞ from expressions (19) and (20), we have

ðaðtÞ � bðtÞÞ LV ub

U
db
dt
þ T w

� �
da
dt
¼ �DwLV ub

U
db
dt
: ð23Þ

Substituting C1ðtÞ and T 2ðtÞ from expressions (17) and (20)
into condition (18), eliminating uaðtÞ by means of formula
(22), we get the nonlinear differential equation containing
functions aðtÞ and bðtÞ:

LV T wðub�1Þ ð1�KÞub

U
db
dt
� 1

ki

da
dt

� �
aðtÞ

¼ T w�T atðtÞ�
LV ub

U
bðtÞdb

dt

� �
ðaðtÞ�bðtÞÞLV ub

U
db
dt
þT w

� �
:

ð24Þ
Expressions (23) and (24) represent the highly nonlinear
differential system for aðtÞ and bðtÞ. Let us consider three
possible analytic solutions describing real solidification
conditions. The first solution consists in the following. In
view of the fact that the interfaces move relatively slowly
[14,16], we arrive at the linear differential equation connect-
ing aðtÞ and bðtÞ (neglecting the term proportional to
ðda=dtÞðdb=dtÞ in Eq. (23)). Integrating this equation in
view of the initial conditions að0Þ ¼ bð0Þ ¼ 0, we get

aðtÞ ¼ �DwLV ub

T wU
bðtÞ ð25Þ

(aðtÞ=bðtÞ ¼ 0:071 for the physical parameters under con-
sideration and ub ¼ 0:5). We choose these initial conditions
because a characteristic time of observations [14] is many
times higher than a time of mushy layer initiation.

Further, substituting the term in square brackets from
(23) into (24), taking into account (25), we come to the lin-
ear differential equation for b2ðtÞ:
I
2

db2

dt
¼ T w � T atðtÞ;

where

I ¼ LV ub

U
1� DwLV ub

T wU
LV Dw

kiT w

þ 1� K
� �

ðub � 1Þ
� �

:

After integration of this equation (bð0Þ ¼ 0), we find the
mushy layer/liquid interface

bðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

I
T wt �

Z t

0

T atðaÞda

� �s
: ð26Þ

Expression (26) shows that the interfaces aðtÞ and bðtÞ, as
would be expected, become self-similar [20] if the surface
(atmospheric) temperature Tat is constant. If the atmo-
spheric temperature undergoes different time variations,
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the interfaces aðtÞ and bðtÞ lie between two self-similar
regimes, which correspond to the maximum (T max) and
minimum (T min) ice surface temperatures measured in
experiments. So, for example, for the mushy layer/ocean
interface, we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

I
ðT w � T maxÞt

r
6 bðtÞ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

I
ðT w � T minÞt

r
:

Thus, the nonlinear problem under consideration is solved
analytically (explicit form of solutions is given by expres-
sions (5), (6), (9), (15), (17), (20)–(22), (25), (26)). Let us
especially emphasize that the solution depends on one free
parameter ub (this value cannot be found in the context of
the theory under consideration). The solid fraction ub must
be found semi-empirically (when one of the functions
found theoretically is compared with experiments). Then
all of the rest functions will be completely known for any
depths and times.

We have been interested to compare the mushy layer
theory with the frontal analogue. If we formally put
ub ¼ 1 (the mushy layer is entirely filled with the sea ice),
it is easy to see that expression (26) transforms to expres-
sion (4), uaðtÞ and uðz; tÞ ! 1, T 1ðtÞ and C1ðtÞ ¼ T 2ðtÞ
become T atðtÞ and ðT w � T atðtÞÞ=hðtÞ, respectively. In other
words, our explicit solutions for the mushy layer transform
to their analogues for the planar front.

Fig. 2 demonstrates how the theory under consideration
agrees with experimental data [14,16] for young sea ices.
The free parameter ub is chosen in such a manner that
one of the functions found theoretically would approxi-
mate its experimental analogue (it is easily seen from
Fig. 2 that all of the rest functions found theoretically
are in a good agreement with observations for this value
of ub). All of the curves plotted for two values of ub essen-
tially differ from the frontal solutions and properly describe
the solidification dynamics of ice thickness and tempera-
ture fluctuations. The solid fraction at the sea ice/mushy
layer interface as a function of time is shown in Fig. 3.
An important point is that ua and u (ub 6 u 6 ua)
undergo only insignificant time and spatial variations (a
rapid growth of u occurs only at the early stages of the pro-
cess, �100 min, when a thin ice cover appears). Taking into
account the latter and the fact that the temperature relax-
ation time is many times smaller than a characteristic time
of the front motion, we conclude that Eq. (7) can be
approximated by means of equation o

2T mðz; tÞ=oz2 ¼ 0.
Now, it is easily seen that the linear temperature profile
(6) exactly satisfies to this equation and approximately
describes the heat balance in the form of Eq. (7).

It is important to keep in mind that the sea ice/ocean
interface in nature does not divide pure ice and freezing
ocean, and divides the mushy layer with a high content
of ice (u � 0:5–0:9, Fig. 3) and sea water free of ice struc-
tures. The sea ice/mushy layer interface, aðtÞ, lags behind
the mushy layer/ocean interface, bðtÞ, by virtue of the fact
that the process of ice formation is hampered within the
mushy layer with a high content of ice (all of the impurities
rejected by the ice lattice are initially retained within the
interstices of a layer of sea ice).

Let us pay our attention to the conductive heat flux
released to the atmosphere from the sea ice/atmosphere
interface at z ¼ 0. Within the framework of the model under
consideration, this flux can be written in the form J CðtÞ ¼
kiC1ðtÞ. This flux stems from the latent heat flux and other
factors. Let us write down the mean latent heat flux as

J LðtÞ ¼
LV

bðtÞ � aðtÞ

Z bðtÞ

aðtÞ
uðz; tÞdz

db
dt
� da

dt

� �
:

In view of insignificant rates of change of aðtÞ with time
(see also Fig. 2a and c), the term stemming from the motion
of this boundary is omitted. Fig. 3 demonstrating time vari-
ations of the fluxes shows that J CðtÞ and J LðtÞ lie close to
each other. The residual heat flux JðtÞ ¼ J CðtÞ � J LðtÞ
(see Fig. 3), within the framework of the model under con-
sideration, stems from the fact that the heat releases to the
atmosphere. In order to explain the latter it is necessary to
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Fig. 4. Three analytic solutions for the mushy layer boundaries: 1 – (25)
and (26), 2 – (27) and (28), 3 – (29) and (30). Numbers at the curves
designate corresponding solutions.
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say that the residual flux is significant only during initial
stages of the process (Fig. 3 illustrates its dynamics hereaf-
ter, where the flux drops and oscillates in the vicinity of
J ¼ 0). In other words, the role of J makes itself evident
during essential variations in the solid fraction. It should
be noted that the heat flux JðtÞ decreases when the atmo-
spheric temperature goes down and, as a consequence,
when the mushy layer increases most rapidly (these instants
of time are shown by slight crests of bðtÞ in Fig. 2a and c).
The total oceanic heat flux differs from the residual flux
JðtÞ because some additions (e.g., the turbulent oceanic
heat flux at the underside of the ice, the solar radiation heat
flux reflected from the ice cover, etc. may be mentioned)
appear in nature. Some of these factors can be analyzed
in the spirit of this paper. Let us emphasize in conclusion
that the heat fluxes J CðtÞ or J LðtÞ, obtained theoretically
on the basis of experimental data, approximately represent
the total heat flux per unit area lost during solidification of
leads (as is seen, these fluxes are in a good agreement with
field observations [23] on young sea ice dynamics).

Let us obtain the second analytic solution which
describes the self-similar solidification from a cooled
boundary of constant temperature [20]. Substituting the
term in square brackets from (23) into (24), neglecting
da=dt in comparison with db=dt and taking into account
small temperature oscillations

jT atðtÞj � jT wj �
LV ub

U
bðtÞ db

dt
(this case is frequently occurs in practice), we get

bðtÞ ¼ AaðtÞ; A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T wðub � 1Þð1� KÞU

DwLV ub

s
: ð27Þ

Keeping in mind the strong inequality, from (23) we obtain

aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dw

A� 1
t

r
: ð28Þ

Expressions (27) and (28) correspond to the case when the
solidification boundaries are proportional to the square
root of time and the regime under consideration is far from
initial stages [20,24].

Let us pay our attention to the third analytic solution of
Eqs. (23) and (24). Again, substituting the term in square
brackets from (23) into (24), neglecting da=dt in compari-
son with db=dt, we come to nonlinear differential equation
of the form

T w

2Dw

ðub � 1Þð1� KÞa2ðtÞ � LV ub

2U
b2ðtÞ þ T wt �

Z t

0

T atðaÞda

¼ 0:

Taking into account a� b, we have the following expres-
sions for the phase transition boundaries:

bðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U

LV ub
T wt �

Z t

0

T atðaÞda

� �s
; ð29Þ

aðtÞ ¼ �Dw

Z t

0

ðT w � T atðaÞÞda
T atðaÞbðaÞ

: ð30Þ
Fig. 4 illustrates obtained solutions for different solidifica-
tion conditions. Curves 1 and 3 practically coincide for the
phase transition boundary bðtÞ (also these curves are in a
good agreement with experimental data, see Fig. 2) due
to similar physical hypotheses taken into consideration
above. Two solutions of aðtÞ plotted for curves 1 and 3
show that the phase transition boundary aðtÞ is practically
frozen in comparison with bðtÞ. This means that the solid-
ification domain (solid and mushy regions) can be consid-
ered as a mushy layer. This is due to the fact that
solidification domains represent rather loose structures in
natural conditions (see, among others, [23,25]).
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